A Riemannian Invariant, Euler Structures and Some Topological Applications

نویسندگان

  • DAN BURGHELEA
  • STEFAN HALLER
چکیده

In this paper: (i) We define and study a new numerical invariant R(X, g, ω) associated with a closed Riemannian manifold (M, g), a closed one form ω and a vector field X with isolated zeros. When X = − gradg f with f :M → R a Morse function this invariant is implicit in the work of Bismut–Zhang. The invariant is defined by an integral which might be divergent and requires (geometric) regularization. (ii) We define and study the sets of Euler structures and coEuler structures of a based pointed manifold (M,x0). When χ(M) = 0 the concept of Euler structure was introduced by V. Turaev. The Euler resp. co-Euler structures permit to remove the geometric anomalies from Reidemeister torsion resp. Ray–Singer torsion. (iii) We apply these concepts to torsion related issues, cf. Theorems 3 and 4. In particular we show the existence of a meromorphic function associated to a pair (M, e∗), consisting of a smooth closed manifold and a co-Euler structure, defined on the variety of complex representations of the fundamental group of M whose real part is the Ray–Singer torsion (corrected). This function generalizes the Alexander polynomial for the complement of a knot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J ul 1 99 8 REMOVING METRIC ANOMALIES FROM RAY SINGER TORSION

Ray Singer torsion is a numerical invariant associated with a compact manifold equipped with a flat bundle, a Riemannian metric on the manifold and a Hermitian structure on the bundle. In this note we show how one can remove the dependence on the Riemannian metric and the Hermitian structure with the help of a base point and of an Euler structure, and obtain a topological invariant. A numerical...

متن کامل

Sub-Riemannian structures on groups of diffeomorphisms

In this paper, we define and study strong right-invariant sub-Riemannian structures on the group of diffeomorphisms of a manifold with bounded geometry. We derive the Hamiltonian geodesic equations for such structures, and we provide examples of normal and of abnormal geodesics in that infinite-dimensional context. The momentum formulation gives a sub-Riemannian version of the Euler-Arnol’d equ...

متن کامل

`1-Homology and Simplicial Volume

Introduction A pervasive theme of contemporary mathematics is to explore rigidity phenomena caused by the symbiosis of algebraic topology and Riemannian geometry on manifolds. In this context, the term " rigidity " refers to the astounding fact that certain topological invariants provide obstructions for geometric structures. Consequently , topological invariants of this type serve as interface...

متن کامل

N = 2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant”, Commun.Math.Phys

We discuss gauge theory with a topological N = 2 symmetry. This theory captures the de Rham complex and Riemannian geometry of some underlying moduli spaceM and the partition function equals the Euler number χ(M) of M. We explicitly deal with moduli spaces of instantons and of flat connections in two and three dimensions. To motivate our constructions we explain the relation between the MathaiQ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003